A NOTE ON THE ZIMMERMANN METHOD FOR SOLVING FUZZY LINEAR PROGRAMMING PROBLEMS

Authors

  • EFFAT ZAEIMAZAD DEPARTMENT OF MATHEMATICES, UNIVERSITY OF SHAHID-BAHONAR KERMAN, KERMAN, IRAN
  • HAMIDREZA MALEKI DEPARTMENT OF BASIC SCIENCES, SHIRAZ UNIVERSITY OF TECHNOLOGY, SHIRAZ, IRAN
  • MOHAMMADREZA SAFI DEPARTMENT OF MATHEMATICES, UNIVERSITY OF SHAHID-BAHONAR KERMAN, KERMAN, IRAN
Abstract:

There are several methods for solving fuzzy linear programming (FLP)problems. When the constraints and/or the objective function are fuzzy, the methodsproposed by Zimmermann, Verdegay, Chanas and Werners are used more often thanthe others. In the Zimmerman method (ZM) the main objective function cx is addedto the constraints as a fuzzy goal and the corresponding linear programming (LP)problem with a new objective (λ ) is solved. When this new LP has alternative optimalsolutions (AOS), ZM may not always present the "best" solution. Two cases may occur:cx may have different bounded values for the AOS or be unbounded. Since all of theAOS have the same λ , they have the same values for the new LP. Therefore, unlesswe check the value of cx for all AOS, it may be that we do not present the bestsolution to the decision maker (DM); it is possible that cx is unbounded but ZMpresents a bounded solution as the optimal solution. In this note, we propose analgorithm for eliminating these difficulties.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Defuzzification Method for Solving ‎Fuzzy ‎Linear Programming Problems

Several authors have proposed different methods to find the solution of fully fuzzy linear programming (FFLP) problems. But all the existing methods are based on the assumption that all the fuzzy coefficients and the fuzzy variables are non-negative fuzzy numbers. in this paper a new method is proposed to solve an FFLP problems with arbitrary fuzzy coefficients and arbitrary fuzzy variables, th...

full text

A new method for solving fully fuzzy linear Bilevel programming problems

In this paper, a new method is proposed to find the fuzzy optimal solution of fully fuzzy linear Bilevel programming (FFLBLP) problems by representing all the parameters as triangular fuzzy numbers. In the proposed method, the given FFLBLP problem is decomposed into three crisp linear programming (CLP) problems with bounded variables constraints, the three CLP problems are solved separately...

full text

A new method for solving fuzzy multi-objective linear programming problems

The purpose of this paper is to develop a new two-stage method for fuzzy multi-objective linear program and apply to engineering project portfolio selection. In the fuzzy multi-objective linear program, all the objective coefficients, technological coefficients and resources are trapezoidal fuzzy numbers (TrFNs). An order relationship for TrFNs is introduced by using the interval expectation of...

full text

Providing a Method for Solving Interval Linear Multi-Objective Problems Based on the Goal Programming Approach

Most research has focused on multi-objective issues in its definitive form, with decision-making coefficients and variables assumed to be objective and constraint functions. In fact, due to inaccurate and ambiguous information, it is difficult to accurately identify the values of the coefficients and variables. Interval arithmetic is appropriate for describing and solving uncertainty and inaccu...

full text

A new method for solving fully fuzzy linear programming problems

Several authors have used ranking function for solving fuzzy linear programming problems. In this paper some fuzzy linear programming problems are chosen which can’t be solved by using any of the existing methods and a new method is proposed to solve such type of fuzzy linear programming problems. The main advantage of the proposed method over existing methods is that the fuzzy linear programmi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 2

pages  31- 45

publication date 2007-10-09

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023